Number Systems

\(\mathbb N\): The set of natural or counting numbers 0, 1, 2, 3, etc. Some say this set does not include zero.

\(\mathbb Z\): The set of integers. This set is the same as the set of natural numbers but includes the negative whole numbers.

\(\mathbb Q\): The set of rational numbers. These are the numbers that can be expressed as a proper fraction or one integer divided by another.

\(\mathbb R\): The set of real numbers. That is probably all the numbers you know unless you have studied the topic of Complex Numbers.

Hide/Show
$$\mathbb R$$
$$\mathbb Q$$
$$\mathbb Z$$
$$\mathbb N$$
\(\text{one million}\)
\(\frac34\)
\(\cos 40^o\)
\(\pi\)
\(\sin 30^o\)
\(-\sqrt9\)
\(\frac{57}{9}\)
\(\frac23\)
\(\sqrt2\)
\(1.\dot4\dot2\)
\(\frac12\div\frac12\)
\(7\)
\(-2.479315...\)
\(1.3\)
\(1\div6\)
Featured Activity

23 or Bust

23 or Bust

A game involving mental arithmetic and strategy for two players or one player against the computer. It is possible to beat the computer but you need a well thought out strategy.

Check

Drag the numbers into the correct sets as shown in the Venn diagram above. When you have finished click on the 'Check' button above.

If you make any mistakes don't forget to do your corrections! You can have as many attempts as you want to get the right answer.

There is a solution and ad-free version of this activity available to those who have a Transum Subscription.

There are other related activities on the Transum Mathematics website to support your understanding of number.

Venn Diagram Sieve of Eratosthenes Satisfaction Recurring Decimals Number
Recently Updated

Transformation Golf

Transformation Golf

Use reflection, translation or rotation to get the ball into the holes on this nine-hole golf course. So far this activity has been accessed 128 times and only 1 person has earned a Transum Trophy for completing it.


Strange But True,

Monday, August 5, 2019

"Most natural numbers are very, very large!"

Apple

©1997-2025 WWW.TRANSUM.ORG